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The distribution of the mean intensity of a finite group of reflexions. By E. Staniey,* Division
of Physics, National Research Council, Ottawa, Canada.

(Received 28 February 1955)

Wilson (1949) has shown that, ideally, the intensities in
any homogeneous group of reflexions (Stanley, 1955) are
distributed in one of two ways. In the form given by
Howells, Phillips & Rogers (1950) the distribution func-
tions are

(1)P(z)dz = exp (—z)dz (1)

(2)

where z = I/X and X = 3 f2. Both distributions are of
the Type III of Pearson (1895) and it follows (Aitken,
1949, p. 129) that the mean value, Z, of a group of n
reflexions is distributed as

and
(1)P(z)dz = (2nz)~t exp (—32)dz,

(1)P(2),dz = n"[(n)1(Z)* ! exp (—nz)dz (3)
and

(DP@E)dz = (3n)"T(Gn)E) 1 exp (—dn2)dz . (4)

The distributions (3) and (4) are identical apart from the
factor 2 in the variable n, and

Fig. 1. The distribution of the mean value of n intensities
from the acentric distribution.
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(P @n = ()P @)2n - (5)

It is convenient to deal only with the distribution (3)
since it is simply related to (4) through (5). The distribu-
tion is skew but tends asymptotically to the normal
distribution as n increases. Fig. 1 shows the distribution
graphically for several values of n. The mean value of z is

E=1. (6)
The most probable value of Z occurs at

(F)mox. = 1—-1/n, (7)

and has the value
(1)P(Z)max. = n"I'(n)"1(1—1/n)*" 1 exp (—(n—1)) . (8)
If n is large, n! = n*(27n)? exp (—n) and this reduces to
()P (E)max. = n{2x(n—1)}"%, (9)

which is correct to about 1% for n = 10.
The variance of z is (1)V(Z), = 1/n, and the standard

deviation is
(D)o@ = (1/n)}.

The fact that (1)P(z), = (1)P(z)z, has some interesting
consequences. The distribution of the mean values of the
reflexions taken in pairs from the centric distribution
yields the acentric distribution. This implies that a false
distribution would be obtained in any event when non-
equivalent reflexions overlap. This could occur in powder
photographs of crystals belonging to some space groups
and with some twins where two different centric distribu-
tions, completely overlapping, would give an acentric
distribution. If the overlap is greater than twofold or if the
individual distributions are acentric, the resulting distri-
bution will have even lower dispersion.

(10)

The N(z) distribution where N(z) = gz P(z)dz (Howells

0
et al., 1950) has been used for distinguishing between the
distributions (1) and (2). The two curves are somewhat
similar in shape. The distribution of N(2) is
z z
NGy = { P@ndz = o) 2@ exp (—n2)dz .
Yo 0
(11)
This is the incomplete gamma function tabulated by
Pearson (1934). When n = 2
(I)NE), = (I)N@E) = 1—exp (—2) (12)
and

()N (), = 4SEEexp (—22)dz = 1— (14 22) exp (—23). (13)
0

The shape of (1)N(z), is quite different from (1)N(z),,
notably in having an opposite initial curvature. These
curves are shown in Fig. 2. It is possible that this would
provide a more critical test for the distribution type but
it would be tedious to apply. For n > 2 the family of
N(z), curves shown in Fig. 2 all have an initial curvature
opposite to that of the N(z) curves.
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Fig. 2. The cumulative distributions (1)N(z)y.

The determination of the error in the mean value of the
intensities, (), is complicated by the dependence on sin .
Provided the range of sin 6 is not large the standard
deviations are

(1o((Labs))n = (1/n)2E
(Mo Tabs ) = (2/n)EZ,

where Iaps, is the value of the intensity on the absolute
scale.

To determine the scaling factor C and the temperature
coefficient 2B, In ((I)/X) is plotted against sin? 6/42
(Wilson, 1942). The standard deviation of the ordinate
of each point on the graph is of the order ¢(z), and the
distribution is reasonably symmetrical for n > 20. The
standard deviation of the extrapolated logarithm of the
scaling factor is of the order ¢(Z),(m—1)-%, where m is
the number of equal unique groups into which the N
reflexions are divided (N = nm). The standard deviation
of the scaling factor is then of the order Co (z),(m—1)"%,
so that very roughly the standard deviations of the scaling
factor for the distributions (1) and (2) are C(1/N)} and
C(2/N)t.

The standard error in the temperature coefficient 2B
will be of the order ¢(2),4%/(m—1)% sin? Opax., where
Omax, is the maximum value of 6 used in the graph.

Although this analysis is only approximate it enables
some estimate to be made of the reliability of the scaling
factor and the temperature factor to be expected from a
statistically ideal structure. It may also be of use in
indicating whether observed deviations of the individual
points on the Wilson graph are within the likely range or
due to departures of the structure from the ideal.

The method of Kartha (1953) for determining the
absolute scale of intensities suffers from exactly the same

and

type of errors.* Although the equation given by Kartha
is exact it involves the summation of the observed in-
tensities to infinity. Any finite summation will have a
probable error governed by the distribution type, the
way in which the mean intensity varies with sin 8 and
the number of reflexions included in the summation.
Since the range of sin 6 in this case is not small the present
analysis is not directly applicable but there seems no
reason why the probable error should be less than that in
Wilson’s method.

I am grateful to Dr D. Rogers for some helpful criti-
cisms.
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* Kartha suggests that a temperature coefficient may be
obtained from the melting point of the material or from the
value of sin /4 at which the mean intensity is reduced to,
say, 1/1000 of its maximum value. The first method will
give & value of 2B which may be very different from the ap-
parent coefficient observed in the X-ray diffraction pattern;
the second method is exactly equivalent to, though less
precise than, the method of Wilson.



